Why does deep and cheap learning work so well?
نویسندگان
چکیده
We show how the success of deep learning depends not only on mathematics but also on physics: although well-known mathematical theorems guarantee that neural networks can approximate arbitrary functions well, the class of functions of practical interest can be approximated through “cheap learning” with exponentially fewer parameters than generic ones, because they have simplifying properties tracing back to the laws of physics. The exceptional simplicity of physics-based functions hinges on properties such as symmetry, locality, compositionality and polynomial log-probability, and we explore how these properties translate into exceptionally simple neural networks approximating both natural phenomena such as images and abstract representations thereof such as drawings. We further argue that when the statistical process generating the data is of a certain hierarchical form prevalent in physics and machine-learning, a deep neural network can be more efficient than a shallow one. We formalize these claims using information theory and discuss the relation to renormalization group procedures. Various “no-flattening theorems” show when these efficient deep networks cannot be accurately approximated by shallow ones without efficiency loss — even for linear networks.
منابع مشابه
Comment on "Why does deep and cheap learning work so well?" [arXiv: 1608.08225]
In a recent paper, “Why does deep and cheap learning work so well?”, Lin and Tegmark claim to show that the mapping between deep belief networks and the variational renormalization group derived in [1] is invalid, and present a “counterexample” that claims to show that this mapping does not hold. In this comment, we show that these claims are incorrect and stem from a misunderstanding of the va...
متن کاملWhy & When Deep Learning Works: Looking Inside Deep Learnings
In recent years, Deep Learning has emerged as the leading technology for accomplishing broad range of artificial intelligence tasks (LeCun et al. (2015); Goodfellow et al. (2016)). Deep learning is the state-of-the-art approach across many domains, including object recognition and identification, text understating and translation, question answering, and more. In addition, it is expected to pla...
متن کاملWhy does Deep Learning work? - A perspective from Group Theory
Why does Deep Learning work? What representations does it capture? How do higher-order representations emerge? We study these questions from the perspective of group theory, thereby opening a new approach towards a theory of Deep learning. One factor behind the recent resurgence of the subject is a key algorithmic step called pretraining: first search for a good generative model for the input s...
متن کاملEnsemble Robustness of Deep Learning Algorithms
The question why deep learning algorithms perform so well in practice has puzzled machine learning theoreticians and practitioners alike. However, most of well-established approaches, such as hypothesis capacity, robustness or sparseness, have not provided complete explanations, due to the high complexity of the deep learning algorithms and their inherent randomness. In this work, we introduce ...
متن کاملCost efficient gradient boosting
Many applications require learning classifiers or regressors that are both accurate and cheap to evaluate. Prediction cost can be drastically reduced if the learned predictor is constructed such that on the majority of the inputs, it uses cheap features and fast evaluations. The main challenge is to do so with little loss in accuracy. In this work we propose a budget-aware strategy based on dee...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1608.08225 شماره
صفحات -
تاریخ انتشار 2016